Optimal control of mixed local-nonlocal parabolic PDE with singular boundary-exterior data

نویسندگان

چکیده

<p style='text-indent:20px;'>We consider parabolic equations on bounded smooth open sets <inline-formula><tex-math id="M1">\begin{document}$ {\Omega}\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M2">\begin{document}$ N\ge 1 $\end{document}</tex-math></inline-formula>) with mixed Dirichlet type boundary-exterior conditions associated the elliptic operator id="M3">\begin{document}$ \mathscr{L} : = - \Delta + (-\Delta)^{s} id="M4">\begin{document}$ 0<s<1 $\end{document}</tex-math></inline-formula>). Firstly, we prove several well-posedness and regularity results of problems smooth, then singular data. Secondly, show existence optimal solutions control problems, characterize optimality conditions. This is first time that such topics have been presented studied in a unified fashion for local-nonlocal PDEs data.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary optimal control of coupled parabolic PDE-ODE systems

This paper deals with boundary optimal control problem for coupled parabolic PDEODE systems. The problem is studied using infinite-dimensional state space representation of the coupled PDE-ODE system. Linearization of the non-linear system is established around a steady state profile. Using some state transformations, the linearized system is formulated as a well-posed infinite-dimensional syst...

متن کامل

Optimal control of a semilinear parabolic equation with singular arcs

This paper develops a theory of singular arc, and the corresponding second order necessary and sufficient conditions, for the optimal control of a semilinear parabolic equation with scalar control applied on the r.h.s. We obtain in particular an extension of Kelley’s condition, and the characterization of a quadratic growth property for a weak norm.

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Blow-up for a degenerate and singular parabolic equation with nonlocal boundary condition

The purpose of this work is to deal with the blow-up behavior of the nonnegative solution to a degenerate and singular parabolic equation with nonlocal boundary condition. The conditions on the existence and non-existence of the global solution are given. Further, under some suitable hypotheses, we discuss the blow-up set and the uniform blow-up profile of the blow-up solution. c ©2016 All righ...

متن کامل

A distributed parabolic control with mixed boundary conditions

We study the asymptotic behavior of an optimal distributed control problem where the state is given by the heat equation with mixed boundary conditions. The parameter α intervenes in the Robin boundary condition and it represents the heat transfer coefficient on a portion Γ1 of the boundary of a given regular n-dimensional domain. For each α, the distributed parabolic control problem optimizes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Evolution Equations and Control Theory

سال: 2022

ISSN: ['2163-2472', '2163-2480']

DOI: https://doi.org/10.3934/eect.2022015